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Abstract. A model for a solid sphere undergoing Brownian motion in a viscoelastic 
(Maxwell) fluid is described in terms of a non-Markovian Langevin equation. By solving 
this equation exactly, the particle’s density-density and current-current time correlation 
functions are calculated. From the former, the time-dependent self-diffusion coefficient, 
D( t ) ,  is evaluated for an ensemble of Brownian particles. Then a numerical estimation of 
D(  t )  is performed for typical values of the sphere’s parameters and for two viscoelastic 
fluids describable by Maxwell’s model. A comparison of this result with the corresponding 
expressions for D(  t )  for a Newtonian fluid in the Stokes and Boussinesq-Basset approxima- 
tions for the drag, shows that for the Maxwell fluid the behaviour of D( t )  is analytic and 
similar to that of the Newtonian fluid in the Stokes regime. We find that elasticity has a 
minor influence on D ( t )  and that persistent correlations (long time tails) in diffusion do 
not occur for this model. We also compare our results with other related works. 

1. Introduction 

The prominent role that time correlation functions have played in the description of 
macroscopic phenomena stems from their close connection with the transport properties 
of a system. Indeed, transport coefficients can be obtained from time-dependent 
correlations of suitable fluxes (Zwanzig 1965) and the scattering properties of a medium 
are derivable from the density-density correlation function (van Hove 1954). 

Different time-dependent correlation functions have been analysed for a wide class 
of linear transport phenomena in Newtonian fluids. For instance, the Brownian motion 
of a particle in a fluctuating fluid has been extensively studied within the familiar 
Stokes approximation for the drag acting on the particle. The stochastic dynamics is 
described by means of the usual linear Langevin equation and the most important 
assumption in these calculations is that the driving forces in the fluid are characterised 
by a Gaussian Markovian process (Chandrasekhar 1943, Zwanzig 1964, Fox and 
Uhlenbeck 1970). In this case one finds that there exists an instantaneous relation 
between the force acting on the Brownian particle and its velocity. As a consequence 
a microscopic process, such as the correlation in the particle’s velocity, decays exponen- 
tially and there is a wide separation between the timescales of this process and a 
macroscopic one like the diffusion of the particle. 
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However, when the Boussinesq-Basset (Landau and Lifshitz 1960) corrections to 
the drag are taken into account, significant changes occur in the stochastic description: 
there appears a non-instantaneous relationship between the drag and  the velocity of 
the particle, implying that the Langevin equation is no longer Markovian. This memory 
is represented by a slowly decreasing function (tC3'*) and, as a result, the force and  
the velocity are correlated over long time intervals, affecting the behaviour of the 
transport properties of the system. This persistence of correlations destroys the well 
defined separation of timescales mentioned above (Case 1971, Hauge and  Martin-Lof 
1973, Dufty 1974). 

Although these effects have been well studied for Newtonian fluids, much less is 
known for rheological fluids. The purpose of this paper is to consider some of these 
questions within the context of a simple model for Brownian motion in a viscoelastic 
fluid. This type of model has been discussed before (Berne et a1 1966, Zwanzig and 
Bixon 1970, Chow and Hermans 1972, Volkov and  Pokrovsky 1983, Volkov and 
Vinogradov 1984); however, the present approach and  the quantities to be calculated 
are different. Actually, the analysis of the following sections is an  application of the 
method used by Dufty in connection with a Newtonian fluid with memory. More 
specifically, we investigate if the memory introduced by the viscoelasticity on the 
diffusion coefficient is of the same type as the one found by Dufty for a Newtonian 
fluid with memory. To this end we first calculate the self-diffusion coefficient, D(r ) ,  
and then perform a numerical estimation of this quantity for latex spheres in silicone 
oil and in a glucose-separan solution. When these values for D( t )  are compared with 
the corresponding ones for a Newtonian fluid (water) in the Stokes and  Boussinesq- 
Basset regimes, we find that the time behaviour of D( t )  is analytic. N o  long time tails 
ensue and therefore no persistent correlation appears due to the memory effects. 

The paper is organised as follows. In 0 2 we describe the model and  set up  the 
associated non-Markovian Langevin equation. In § 3 this equation is solved exactly 
for given initial conditions and  the corresponding conditional probability density is 
obtained. Then in 0 4 this result is used to calculate the density-density and current- 
current correlation functions. Next, we calculate the (self-)diffusion coefficient for an  
ensemble of Brownian particles and  finally, in § 5, we summarise the main results of 
our work and  make some further physical remarks. 

2. A Gaussian model for Brownian motion 

In this section we review in some detail the main features of the model introduced by 
Volkov and  co-workers (Volkov and Pokrovsky 1983, Volkov and Vinogradov 1984) 
for the Brownian motion of a sphere in a Maxwell fluid. Consider an  incompressible 
quiescent and  unbounded viscoelastic fluid characterised by a single relaxation time 
A o .  At some time in the remote past, a large hard spherical particle of radius U and 
mass m is put into the fluid at point R ( t )  with the velocity U ( t ) ,  both quantities 
defined with respect to the laboratory reference frame. Following Volkov et al we 
assume that the size and  speed of the particle are such that the Reynolds and  Weissen- 
berg numbers for the fluid are small, i.e. 

Here p and 7 denote the mass density and the shear viscosity of the fluid respectively. 
The restriction on Re limits the applicability to creeping flow, while the more severe 
Ws limitation restricts the analysis to a slight degree of fluid elasticity on the flow field. 

Re = p ~ - ' u U  << 1 Ws=hoUu- '<<  1. (2.1) 
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As a consequence of ( 2 . 1 )  the inertial and non-linear convective terms in the 
equations of motion and rheological equation of state may be neglected (Astarita and 
Marrucci 1974). Hence the dynamics of the fluid may be described by 

( 2 . 2 ~ )  

( 2 . 2 b )  

vi is the perturbed velocity field and rij the symmetric traceless part of the stress tensor 
of the fluid. It will be assumed that rij obeys Maxwell's rheological equation of state 
(Bird et al 1977), namely 

= 2 7 y V  is the Newtonian stress tensor and yv is the rate of strain tensor. Note that 

For simplicity we shall assume stick boundary conditions, so equations ( 2 . 2 )  are 

if Jx - R( t)l = (+ 

when Ix - R( t ) l +  W. 

due to assumption ( 2 . 1 ) ,  d/d t  = a l a r .  

supplemented with the following boundary conditions: 

u(x, t )  = V ( x ,  t )  

v ( x ,  t )  + 0 

( 2 . 4 ~ )  

( 2 . 4 b )  

Let us now turn our attention to the motion of the sphere. The drag force acting 
on the particle is given by 

F =  T - ~ S  J (2 .5)  

where d S  denotes a surface element of the sphere directed into the fluid. Actually, 
this force is the sum of two contributions: F'" produced by the deviator part of the 
stress tensor and F'" generated by the hydrodynamic pressure p .  Now, using ( 2 . 2 ) ,  
( 2 . 3 )  and ( 2 . 5 )  it is straightforward to derive a relaxation equation for F (see the 
appendix in Volkov and Vinogradov 1984), namely 

Here F''' is the drag force arising from the Newtonian stress tensor i and is given by 
Stokes law 

F''' = - 6 1 7 ~ 7 U  = -5U. ( 2 . 7 )  

Thus, for times long compared with the initial time, the drag on the sphere is 

This result shows that, indeed, the viscoelastic properties induce a non-local effect in 
time on the drag acting on the sphere, even when the inertial effects of the flow are 
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neglected. Using this result we can then provide for a complete description of the 
sphere’s Brownian motion through the following set of generalised Langevin equations: 

( 2 . 9 ~ )  

(2.9b) 

where we have identified 

y ( t )  = LA;’ exp(-h;’t). (2.10) 

By analogy with the well known case of Brownian motion in an incompressible 
Newtonian fluid fluctuating about equilibrium (Zwanzig 1964, Fox and Uhlenbeck 
1970), we assume that the fluctuating force 4I is a Gaussian process. Moreover, in 
order to calculate equilibrium correlation functions in the next section, we shall 
explicitly assume that the initial particles’ velocities obey a Maxwell-Boltzmann distri- 
bution. Thus it is necessary to guarantee that the model is compatible with an 
equilibrium distribution. In this respect Kubo et a1 (1985), as well as others (Case 
1971, Hauge and Martin-Lof 1973), have shown that a stochastic process such as the 
one defined by equations (2.9) or (2.12) below, will have an equilibrium canonical 
distribution if 4l (orf; defined by (2.13)) satisfies the following form of the fluctuation- 
dissipation theorem 

(4 , ( toM, ( to+  t ) )  = KEJY( l f I )%.  (2.11) 

Here K B  is Boltzmann’s constant and T is the equilibrium temperature. As shown 
explicitly by Kubo et al, the fulfilment of (2.11) requires that Re{y[w]}>O (for real 
w ) ,  where y [ w ]  stands for the Fourier-Laplace transform of y ( t ) .  Since this condition 
is clearly satisfied by (2.10), we expect that (2.11) is indeed a reasonable assumption 
for a viscoelastic solvent. 

It is convenient to rewrite (2.9b) in the form 

where the new fluctuating force f; is now defined as 

f; ( t )  = 4, ( t )  - d s  Y ( f - S 1 U, (SI. 

(2.12) 

(2.13) 

Using (2.11) and following the steps indicated in appendix B of Dufty’s paper, one 
can show that f ;  has the following stochastic properties: 

At this point it is convenient to emphasise that, although the model defined by (2.9a), 
(2.12) and (2.14) represents a non-Markovian process, it is still linear and Gaussian. 
In the next section we use these features to solve (2.12) exactly and calculate the 
conditional probability density W ( R ,  U, t ;  R,,  U, ,  0) for this process. 
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3. The solution of the generalised Langevin equations 

The Green function, M ( t ) ,  associated with (2.12) satisfies the equation 

md M ( t ) + lof d s y ( t - s ) M ( s ) = S ( t ) 
dt  (3.1) 

with the initial condition M ( 0 )  = 1 and where y ( t )  is given by (2.10). By Laplace 
transformation we find that 

( 3 . 2 ~ )  M (  t )  =$A-’[ a exp($bt) + b exp( - f a t ) ]  

or equivalently 

M ( t )  = A - ’  exp(-t/2Ao)(A;’ sinhiAt+A cosh$At) (3.26) 

where we have defined 

A =  A;’( l  -41A0m-’)’i2 (3.3a) 

and a, b turn out to be 

U = (A+A;’) > o (3.3b) 

b = ( A  - A i ’ )  < 0. (3.3c) 

In terms of M (  t )  and for given initial values Ro, U, ,  the formal solutions to (2.12) 
and ( 2 . 9 ~ )  are, respectively, 

U (  t )  - M (  t )  U o = A ( t )  (3.4) 

(3.5) R (  t ) - Ro - U, lo‘ ds M (  s) = B( t )  

where the right-hand sides are the stochastic quantities 

A ( t ) =  dsM(t -s ) f ( s )  i,‘ 
B ( t ) =  f0‘ds [:ds’M(s-s’)f(s’). 

( 3 . 6 ~ )  

(3.6b) 

It will also 
as 

Now, 
W R ,  U, t ;  

W R ,  U, t ;  

considered 

with 

be convenient to denote the left-hand sides of (3.4) and (3.5), respectively, 

X (  t )  SE U (  t )  - M ( t )  U, 

Y ( t ) = R ( t ) - R o - U o  

(3.7a) 

(3.7b) 

Dufty has shown that the conditional probability density 
Ro,  U, ,  0) of the linear, Gaussian, non-Markovian process of the type 
here is given by 

Ro, U03 0 )  
= $T-3(FG - H2)-3 /2  

x exp[-i( FG - H*)-’ (  G Y 2  - 2HY * X + FX’) ]  (3.8) 

(3.9) F=(B’)  G = ( A 2 )  H = ( A * B )  
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where the angular brackets denote an equilibrium average. Equation (3.8) is that 
solution of (2.12) which satisfies the initial condition that the Brownian particle is at 
Ro with velocity U, at f = 0. This result is entirely similar to the one obtained originally 
by Chandrasekhar (1943) for a Gaussian-Markovian process, but with different func- 
tion F, G and H. For the present model these functions are calculated from (2.14), 
(3.2) and (3.6) with the following results: 

= 2K~Tm-'{A-'[Ub-*(eXp(+bt) - 1) 

+ ba-'(exp(-jat)- I ) +  t (ba - ' -  ab-')] -+12(r)} 

with 

d s M ( s )  = A-'{ab-'[exp(fbt) - 11 - ba-'[exp(-fat) - l]} 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

4. The correlation functions 

We now calculate the equilibrium density-density and current-current time-dependent 
correlation functions for this model. If for simplicity we take the initial position for 
the particle to be at Ro=O, in terms of the conditional probability density 
W ( R ,  U, t ;  Ro,  U, ,  0) these correlation functions are, respectively, given by 

G ( R , t ) =  f ( U , ) W ( R , U , t ;  Vo)d3UOd3U (4.1) 

G,,(R,f)= f ( U , ) W ( R ,  U , f ;  Uo)Uo,U,d3UOd3U. (4.2) 

I 
I 

Here f (  U,) stands for the Maxwell-Boltzmann distribution function since the correla- 
tion functions are evaluated in equilibrium. Substitution of (3.8), (3.10), (3.11) and 
(3.12) into (4.1) and (4.2) yields Gaussian integrals which are simple but tedious to 
evaluate. After performing all the operations indicated in (4.1) and (4.2) we arrive at 
the following expressions for the above correlations: 

G( R, f ) = m3"( 2'iTKg T)-3'2[  1' + m ( K B  T)-'F]-3'2 

X exp{ -m ( ~ K R  T)-'R2[ 1' + m ( K B  T)- '  F]-'} (4.3) 

and 

G,, ( R ,  f ) = [ I*  m ( K  B T) - '  F]-'[ ( F k f  - H I )  ( 1' 4- m ( K B T)- '  F )  8,, I'R,R, ] G ( R ,  l )  
(4.4) 
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where the time-dependent quantities M,  I ,  F have been defined in the previous section. 
Let us now turn our attention to the (self-)diffusion coefficient defined by 

X 

D ( t )  =I 1"' d s  / dR G,i(R, s). 
3 -X 

(4.5) 

Upon substitution of (4.4) we find that 

where we have defined the diffusion constant Do by 
D ( t )  = m-'K,TI(t) = Do{l +Ao(4A)-'[b2 exp(-$at)-a2 exp($bt)]} (4.6) 

Do=!iZ o(f)=KBTl- ' ,  (4.7) 

1 . 0 1 -  
io3 I O 4  1 o5 

f i s 1  

Figure 1. The ratio D ( f ) / D N S ( f )  as calculated from (4.6) and (4.8) for silicone oil (S,) 
and a glucose-separan solution (E,) .  

I 1  
0.2016 

I , ,  , , , , . , 

0 1 2 3 4 5  7 9 1 0  15 
t I s )  

Figure2. The ratio D ( f ) / D e e ( t )  for S, (0) and E,  ( A )  as calculated from (4.6) and (4.9). 



2128 R F Rodriguez and E Salinas-Rodriguez 

Now, at this point it is convenient to recall that, on the one hand, for a spherical 
Brownian particle in an incompressible fluid fluctuating about equilibrium and within 
the familiar Stokes law approximation, D ( t )  is 

DNS( t )  = Do[ 1 - exp(-m-' l t)]  (4.8) 
with 5 defined by (2.7). On  the other hand, when the Boussinesq-Basset corrections 
to Stokes law are considered, Dufty (1974) has shown that the asymptotic ( t + w )  
behaviour of D( t )  exhibits long time tails, 

DBB( t )  == Do[ 1 - ~ - l / ~ A ( l t ) - ' / ~ ]  (4.9) 
where 

A = ( 6 ~ ~ p ) " ~  (4.10) 

p is the mass density of the fluid. 
From (4.6)-(4.9) it is apparent that after the relaxation of the stress tensor of the 

Maxwell fluid has taken place, the non:Newtonian diffusion coefficient D( t )  reaches 
the same asymptotic value, Do, as the Newtonian coefficients DNS(t) and D B B ( f ) .  

Although this could have been anticipated, it is clear that the approach towsrds Do is 
different in the three cases. To exhibit these differences in more detail we evaluate 
numerically the ratios D( t)/DNS( t )  and D( t ) /  D B B (  t )  for two viscoelastic fluids, namely 
silicone oil (S,) and a solution of 0.02'/0 separan MG500+2% water in glucose 
MCY43N (El) .  Chhabra et al (1980) have studied the rheological properties of these 
fluids and according to their shear stress and normal stress data, S2 would be classified 
as a weakly elastic fluid, whereas El is exceedingly elastic. From their data we take 
for S2 a (Maxwell's) relaxation time A o =  1 . 0 3 ~  10-3s at 22"C, a (zero frequency) 
viscosity of vo = 137.1 P and a density of p = 0.971 g ~ m - ~ .  For E, we take A o =  0.18 s 
at 19 "C, vo = 173 P and p = 1.414 g ~ 3 1 1 ~ ~ .  

As for the viscosity and density of the Newtonian fluid we take typical values for 
water at 20 "C, namely, 77 = 1.0019 x lo-* P and p = 1 g ~ m - ~ .  For the sphere we shall 
assume a mass ( m )  of 1 g and a radius ( a )  of 1.74 x cm. If we now insert all these 
numerical values into (4.6), (4.8) and (4.9) and evaluate the ratios D(t) /D, , ( t ) ,  
D(  f ) / D B B (  t ) ,  we obtain the curves plotted in figures 1 and 2 respectively. 

5. Discussion 

Forthe data chosen for El  and S2 we obtain practically the same values for D( f ) / D N S (  t ) ,  

as shown in figure 1. It is clear from this curve that, for any value of t, D( t )  > D N S (  t ) ,  
which indicates that for the Maxwell fluids the mean square displacement (MSD)  of 
the spheres is always greater than for a Newtonian fluid described by the Stokes 
approximation for the drag. Thus, as a function of time, the decay of the viscoelastic 
MSD is slower than for the Newtonian fluid and so the spheres diffuse (on average) 
over larger distances during the same time interval. But as (4.6) shows, this behaviour 
is analytic; algebraic decays of the type t-"'* ( n  integer) do  not appear for this model. 
Note that for the chosen values of the parameters involved, figure 1 shows that D ( t )  
may be somewhat larger than D N S ( t )  over long time intervals, so correlations persist 
more in a Maxwell fluid than in a Newtonian one. On the other hand, D( t )  < D B B (  t )  
for any t, either for E ,  or S2 (figure 2). This means that the decay of the MSD for the 
viscoelastic fluid is faster than for a Newtonian one with Boussinesq-Basset corrections 
and Brownian particles diffuse over shorter distances in this case. 



Brownian motion in a viscoelasticfluid 2129 

So, the time behaviour of D ( ? )  is between that of DNS(f) and DBB(t). Yet, being 
always analytic, it is closer to that of DNS( t )  where all the memory effects in the drag 
have been completely neglected. Thus, in the limit of Maxwell, elasticity does not 
appreciably modify the time-dependence of the drag and of D( t ) ,  although its magni- 
tude may be considerably larger than that of DNS(?). Long time tails do not show up 
in spite of the existence of a memory in the stochastic dynamics. Therefore a wide 
separation of timescales between microscopic and macroscopic processes exists for 
this model. 

The time-dependent diffusion coefficient D ( t )  may be also defined as the long time 
limit of the ratio ( A R f ( ? ) ) /  t, where ( A R f (  t ) )  stands for the mean-square displacement 
of the particle. This may be rewritten as 

D ( t ) = -  ds ( l - s / t ) (U(O)*U(s ) )  : i: 
where, according to (4.5), 

( 5 . 1 ~ )  

(5 . lb)  

The question thus arises as to whether (4.5) and ( 5 . 1 ~ )  lead to the same results for a 
viscoelastic fluid. It is well known that for a Markovian-Brownian motion in a 
Newtonian fluid both definitions become identical if ( U ( 0 )  * U ( s ) ) +  0 as t + CO, so that 
for times long compared to the velocity correlation time ( 5 . 1 ~ )  reduces to (4.5) (Berne 
and Pecora 1975). A similar argument holds for the viscoelastic case. Indeed, note 
that substitution of (4.4) into (5 . lb)  yields 

( U ( O ) ' U ( ~ ) ) = ~ K B T ~ - ' M ( ~ )  (5.2) 

where the Green function M ( t )  is given by (3.2) and vanishes as t - c o ,  since a > 0 ,  
b < 0 (3.3). a-' and b-' thus measure the decay rate (correlation time) of the velocity 
correlation function and they should be smaller than the diffusion times if ( 5 . 1 ~ )  is 
going to be equivalent to (4.5). This is readily checked for E l ,  the most elastic of the 
fluids considered, by inserting the values of its parameters given in the previous section 
into (3.3). One finds that b = 0.5 s and n = 5 x s, which are indeed much smaller 
than the times considered in figure 1. 

It is worth pointing out that a similar conclusion is reached when the effects of 
elasticity on the drag coefficient for the creeping flow around a sphere (Acharya e? a1 
1976, Kat0 et a1 1972) indicate that this influence is not significant and that a Maxwell 
fluid behaves similarly to a Newtonian fluid. Whether the same conclusions are 
applicable to other properties of viscoelastic fluids remains to be assessed. 

Finally it should be stressed that the relaxation model used for the viscoelastic flow 
is an approximation; perhaps when a more realistic model of viscoelasticity is used 
D( t )  will show long-time-tail effects. 
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